在电磁学里,电磁场(electromagnetic field)是一种由带电物体产生的一种物理场。
概念定义
编辑电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光 速向四周传播,形成电磁波。电磁场是电磁作用的媒介,具有能量和动量,是物质的一种存在形式。电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。随时间变化着的电磁场(electromagncfic field)。
电磁波是电磁场的一种运动形态。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期转化以电磁波的形式向空间传播出去。电磁波为横波,电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播的(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性变化,其强度与距离的平方成反比,波本身带有能量,任何位置之能量、功率与振幅的平方成正比,其速度等于光速(每秒30万公里)。光波也是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同、且量值最大的两点之间的距离,就是电磁波的波长λ。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c。
发展历程
编辑电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播即形成了电磁波,所以电磁波也常称为电波。1864年,英国科学家麦克斯韦在总结前人研究电磁现象取得的成果的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。
M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。
继法拉第电磁感应定律之后,J.C.麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为;电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数(即
)为位移电流密度。它在安培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁方程组,即著名的麦克斯韦方程组,描述了电磁场的分布变化规律。
1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、微波、红外线、可见光、紫外线、X射线及r射线。
电磁波是电磁场的一种运动形态。在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部反回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部反回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波。波长越长的地面波,其衰减也越少。电磁波的波长越长也越容易绕过障碍物继续传播。中波或短波等空中波则是靠围绕地球的电离层与地面的反复反射而传播(电离层在离地面50~400公里之间)。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。其速度等于光速(每秒
厘米)。光波就是电磁波,无线电波也有和光波同样的特性,如当它通过不同介质时,也会发生折射、反射、绕射、散射及吸收等等。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同和量值最大两点之间的距离,就是电磁波的波长。电磁波的频率γ即电振荡电流的频率,无线电广播中用的单位是千赫,速度是c。
电可以生成磁,磁也能带来电,变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,所以电磁波也常称为电波。 1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。 1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,人们又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、微波、红外线、可见光、紫外线、X射线及r射线。
用的波长在10~3000米之间,分长波、中波、中短波、短波等几种。传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几厘米。电磁波有红外线、可见光、紫外线、X射线、γ射线等。各种光线和射线,也都是波长不同的电磁波。其中以无线电的波长最长,宇宙射线的波长最短。
知识
编辑电磁场与电磁波:电磁场由近及远的传播形成电磁波。
似稳电磁场:时变场中不同于静态场的上述一些现象,其显著程度都与频率的高低及设备的尺寸紧密相关。按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场。这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用。交变电磁场与瞬变电磁场:时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。
电磁辐射:麦克斯韦方程表明,不仅磁场的变化要产生电场,而且电场的变化也要产生磁场。时变场在这种相互作用下,产生电磁辐射,即为电磁波。这种电磁波从场源处以光速向周围传播,在空间各处按照距场源的远近有相应的时间滞后现象。电磁波还有一个重要特点,它的场矢量中有与场源至观察点间的距离成反比的分量。这些分量在空间传播时的衰减远较恒定场为小。按照坡印廷定理,电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。
广义的电磁辐射通常是指电磁波频谱而言。狭义的电磁辐射是指电器设备所产生的辐射波,通常是指红外线以下部分。电磁辐射对人体有的伤害,电磁辐射危害人体的机理主要是热效应、非热效应和积累效应等。热效应:人体内
以上是水,水分子受到电磁波辐射后相互磨擦,引起机体升温,从而影响到身体其他器官的正常工作。
非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁波的干扰,处于平衡状态的微弱电磁场即将遭到破坏,人体正常循环机能会遭受破坏。
累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态或危及生命。对于长期接触电磁波辐射的群体,即使功率很小,频率很低,也会诱发想不到的病变,应引起警惕。
各国科学家经过长期研究证明:长期接受电磁辐射会造成人体免疫力下降、新陈代谢紊乱、记忆力减退、提前衰老、心率失常、视力下降、血压异常、皮肤产生斑痘、粗糙,甚至导致各类癌症等;男女生殖能力下降、妇女易患月经紊乱、流产、畸胎等症。
实际应用
编辑1855年,在日本江户闹市区有一位开眼镜铺的商人,他用长3日尺(1日尺等于30.3厘米)的一个马蹄铁,在马蹄铁上面粘满铁钉,用此来招引顾客。但是,在1855年江户大地震发生的当天,吸到磁铁上的铁钉及其他铁制商品,突然掉落在地,使他大为惊愕。时过两小时,一次破坏性大地震发生了,震撼了整个市区。地震过后,发现那块磁铁又恢复了往日的吸铁功能。类似的事件,在中国也曾多次出现。
1970年1月5日,在云南通海发生7.8级大地震。震前,震中区有些人在收听中央人民广播电台的广播,忽然发现收音机音量减小,声音嘈杂不清,特别是在震前几分钟,播音干脆中断。再如,1973年2月6日四川炉霍7.9级地震之前,县广播站的人发现,在震前5-30分钟,收音机杂音很大,无法调试,接着发生了大地震。
地震前磁场变化,很早就被人们注意到了。1872年12月15日印度发生地震前,巴西里亚至伦敦的电报线上出现了异常电流;1930年日本北伊豆地震时,电流计也记到了海底电线上的异常电流。
地震能引起电磁场的变化。一般认为磁场变化的原因有两个,一是地震前岩石在地应力作用下出现“压磁效应”,从而引起地磁场局部变化;二是地应力使岩石被压缩或拉伸,引起电阻率变化,使电磁场有相应的局部变化。岩石温度的改变也能使岩石电磁性质改变。唐山地震前两天,距唐山200多公里的延庆县测雨雷达站和空军雷达站,都连续收到来自京、津、唐上空的一种奇异的电磁波。因此,观测电磁场的变化也成为预报地震的主要手段之一。
分类特性
编辑电磁场的分类
在自由空间按观测点到辐射干扰源距离的不同,电磁场可分为近区场和远区场。距离(R)又与干扰源的工作波长有关。或为近区场或为远区场式中。
电磁场的特性
近区场与远区场的特性不同。
1)近区场
电磁场的几何分布和强度由干扰源的特性决定;
电场和磁场是互为独立的,电场由电荷产生,磁场由电流产生;
电场和磁场均与距离的平方成反比,故场的衰减快;
在传播方向上有场的分量;
波阻抗是时间和位置的函数,而不是常数;
近场为感应场;
场的计算方法服从于静态场的计算方法。
2)远区场
电场由变化的电荷与变化的磁场共同产生,磁场由变化的电流和变化的电场共同产生,电场与磁场不再是互为独立,而是互为源;
波阻抗是常数;
场的结构简单,在垂直于传播方向的平面上,电场与磁场的大小,方向和相位是相同的,也就是说没有传播方向的分量,是共面的,是横电磁场。所以,在自由空间,远区场接近于平面波;
场强与距离成反比规律衰减(如距离增大一倍,场强减少一倍),较近场衰减的慢;
远场为辐射场;
场的计算方法应服从于辐射场的计算方法,即天线理论中的计算方法。
对于近场与远场之间的过度区场(转换区域),其特性和计算方法应在二者之间,但主要类似于辐射场的基本特征。
一般讲平面波时,总是假设为远场,当分别考虑电场波或磁场波时,则假设为近场。近场与远场的分界面随频率的不同而变化。
实验探究
编辑【目的和要求】
通过直线电流的磁场和通电螺线管的磁场的实验,认识带电导体周围存在着磁场,并进一步认识和检验安培右手螺旋定则。
【仪器和器材】
专用电源(低电压、短时间大电流),粗铜线(
毫米)小磁针(J2406型,一组10个),硬纸板(20厘米×20厘米),方座支架(J1 102型),铅笔,带硬纸板(15厘米×20厘米)的螺线管,导线2根,细铁粉。
【实验方法】
一、直线电流的磁场
1. 将30毫米长的粗钢线穿过20厘米见方的硬纸板的中心。
2.将粗铜线沿竖直位置固定好(例如用一个小支架固定硬纸板,或用方座支架夹持住硬纸板)。粗铜线的两端另外用导线连接到专用电源的输出端上,然后在纸板上均匀撒一层细铁粉。
3. 接通专用电源的开关,并同时用一支铅笔轻敲纸板,使上面的铁粉沿磁力线排列。(专用电源的短时间电流输出达三、四十安培以上,然后会在预定的时刻自动断开。)
4.用白纸画出所见图形的简图。然后在纸板上沿同心圆的4个不同方位各放1个小磁针。再次接通专用电源,按小磁针北极所指的方向在同心圆上标出磁力线的方向。
5. 检查导线中的电流方向和磁力线方向是否符合右手螺旋定则
6.改变电流的方向重做一遍上述实验,再画一张磁力线简图,与上图相比较,并检验右手螺旋定则。
二、通电螺线管的磁场
1. 将带硬纸板的螺线管的两端接到专用电源的输出端上,按通电源,同时轻敲均匀地撒好了铁粉的硬纸板,使上面的铁粉沿磁力线排列
2.画出表明螺线管内和两端外铁粉排列形状的简图。
3.在螺线 管内和两端外不同地方放几个小磁针,再次接通专用电源,按小磁针北极所指的方向,在简图上标出磁力线的方向,并注明电流的方向看看是否符合右手螺旋定则
线圈指南针
在铅笔上用牛皮纸缠两层,然后再用漆包线在纸上顺次密绕60——70圈,把线头固定好后,把线圈连同纸筒一起从铅笔上取下,这样 便得到了一个螺旋线圈。
另取铜片、锌片各l小块,泡沫塑料一块,将线圈置于泡沫塑料上,线圈的两头分别与铜片、锌片连接。然后,把这一装置放入盛有盐水(或醋)的杯中,让它浮在液面上,并使锌片、铜片浸入在溶液中。这时你可以看到线圈管的轴线总是指 着南北方向。不管你怎样改变它的指向,它都会恢复南北指向的位置,犹如一架指南针。
这是由于插在盐水中的钢片、锌片形成化学原电池,原电池产生的电流流过螺旋线圈会产生磁场,使螺旋线圈两端显示不同的磁极,所以线圈就会像指南针一样指示方向了。
电磁波介绍
编辑电磁场由近及远的扰动的传播形成电磁波,随时间变化着的电磁场。时变电磁场与静态的电场和磁场有显著的差别,出现一些由于时变而产生的效应。这些效应有重要的应用,并推动了电工技术的发展。
M.法拉第提出的电磁感应定律表明,磁场的变化要产生电场。这个电场与来源于库仑定律的电场不同,它可以推动电流在闭合导体回路中流动,即其环路积分可以不为零,成为感应电动势。现代大量应用的电力设备和发电机、变压器等都与电 磁感应作用有紧密联系。由于这个作用。时变场中的大块导体内将产生涡流及趋肤效应。电工中感应加热、表面淬火、电磁屏蔽等,都是这些现象的直接应用。
研究过程
编辑(一)电磁感应定律
继法拉第电磁感应定律之后,J.C.麦克斯韦提出了位移电流概念。电位移来源于电介质中的带电粒子在电场中受到电场力的作用。这些带电粒子虽然不能自由流动,但要发生原子尺度上的微小位移。麦克斯韦将这个名词推广到真空中的电场,并且认为;电位移随时间变化也要产生磁场,因而称一面积上电通量的时间变化率为位移电流,而电位移矢量D的时间导数(即
)为位移电流密度。它在安 培环路定律中,除传导电流之外补充了位移电流的作用,从而总结出完整的电磁方程组,即著名的麦克斯韦方程组,描述了电磁场的分布变化规律。
(二)麦克斯韦方程
电磁辐射麦克斯韦方程表明,不仅磁场的变化要产生电场,而且电场的变化也要产生磁场。时变场在这种相互作用下,产生电磁辐射,即为电磁波。这种电磁波从场源处以光速向周围传播,在空间各处按照距场源的远近有相应的时间滞后现象。电磁波还有一个重要特点,它的场矢量中有与场源至观察点间的距离成反比的分量。这些 分量在空间传播时的衰减远较恒定场为小。按照坡印廷定理,电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。似稳电磁场时变场中不同于静态场的上述一些现象,其显著程度都与频率的高低及设备的尺寸紧密相关。按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场。这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用。
(三)交变电磁场与瞬变电磁场
时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。对它们的研究在目的上和方法上有一些各自的特点。交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或 时序展开等方法进行分析。
无线电波
编辑无线电波的传播方式:地波—沿地面传播;长波、短波、中短波可用地波传播(无线电广播),传播距离在几百千米以内;天波:依靠电离层的反射来传播的无线电波,短波适用。可传播到几千千米以外;直线传播:适用于微波---超短波(又叫空间波或视波),一般传播距离几十千米。
长波:波长30000m~3000m,频率10 kHZ ~100kHZ,通过地波传播,用于超远程无线电通信和导航。
中波:波长3000m~200m,频率100kHZ~1500kHZ,通过地波和天波传播,用于调幅(AM)无线电广播、电报、通信。
中短波:波长200m~50m,频率1500kHZ~6000kHZ,通过地波和天波传播,用于调幅(AM)无线电广播、电报、通信。
短波:波长50m~10m,频率6MHZ~30MHZ,通过天波传播,用于调幅(AM)无线电广播、电报、通信。
微波:
米波VHF:波长10m~1m,频率30MHZ~300MHZ,通过近似直线传播,用于调频无线电广播、电视、导航。
分米波UHF:波长1m~0.1m,频率300MHZ~3000MHZ,通过地波传播,用于电视、雷达、导航。
厘米波:波长10cm~1cm,频率3000MHZ~30000MHZ,通过地波传播,用于电视、雷达、导航。
毫米波:波长10mm~1mm,频率30000MHZ~300000MHZ,通过地波传播,用于电视、雷达、导航。
百科词条作者:小小编,如若转载,请注明出处:https://glopedia.cn/96033/