航空指飞行器在地球大气层内的航行活动,航天指飞行器在大气层外宇宙空间的航行活动。航空航天大大改变了交通运输的结构。航空航天的发展虽然与军事应用密切相关,但更为重要的是人类在这个领域所取得的巨大进展,对国民经济的众多部门和社会生活的许多方面都产生了重大影响。
历史
编辑人类在征服大自然的漫长岁月中,早就产生了翱翔天空、遨游宇宙的愿望。在生产力和科学技术水平都很低下的时代,这种愿望只能停留在幻想的阶段。虽然人类很早就做过种种飞行的探索和尝试,但实现这一愿望还是从18世纪的热空气气球升空开始的。
自从20世纪初第一架带动力的、可操纵的飞机完成了短暂的飞行之后,人类在大气层中飞行的古老梦想才真正成为现实。经过许多杰出人物的艰苦努力,航空科学技术得到迅速发展,飞机性能不断提高。人类逐渐取得了在大气层内活动的自由,也增强了飞出大气层的信心。
到了50年代中期,在火箭、电子、自动控制等科学技术有了显著进展的基础上,第一颗人造地球卫星发射成功,开创了人类航天开始成为人类活动的新疆域。
航空航天事业的发展是20世纪科学技术飞跃进步,社会生产突飞猛进的结果。航空航天的成果集中了科学技术的众多新成就。迄今为止的航空航天活动,虽然还只是人类离开地球这个摇篮的最初几步,但它的作用已远远超出科学技术领域,对政治、经济、军事以至人类社会生活都产生了广泛而深远的影响。
介绍
编辑航空
航空是指载人或不载人的飞行器在地球大气层中的航行活动。航空必须具备空气介质和克服航空器自身重力的升力,大部分航空器还要有产生相对于空气运动所需的动力。航空技术的每一项成就都离不开空气动力学的进展。
航空按其使用方向有军用航空和民用航空之分。
军用飞机
军用航空泛指用于军事目的的一切航空活动,主要包括作战、侦察、运输、警戒、训练和联络救生等。在现代高技术战争中,夺取制空权是取得战争胜利的重要手段,也是军用航空的主要活动。军用航空活动主要由军用飞机来完成,军用飞机可分为作战飞机和作战支援飞机两大类。典型的作战飞机有战斗机(又称歼击机)、攻击机(又称强击机)、战斗轰炸机、反潜机、战术和战略轰炸机等。作战支援飞机包括军用运输机、预警指挥机、电子战飞机、空中加油机、侦察机、通讯联络机和军用教练机等。除固定翼飞机外,直升机在对地攻击、侦察、运输、通信联络、搜索救援以及反潜等方面也发挥着巨大的作用,已成为现代军队,特别是陆军的重要武器装备。
民用航空泛指利用各类航空器为国民经济服务的非军事性飞行活动。根据不同的飞行目的,民用航空分为商业航空和通用航空两大类。商业航空指在国内和国际航线上的商业性客、货(邮)运输;这类运输服务主要由国内和国际干线客机、货机或客货两用机以及国内支线运输机完成。通用航空指用于公务、工业、农林牧副渔业、地质勘探、遥感遥测、公安、气象、环保、救护、通勤、体育和观光游览等方面的飞行活动;通用飞机主要有公务机、农业机、林业机、轻型多用途飞机、巡逻救护机、体育运动机和私人飞机等。直升机在近海石油勘探、海防紧急救援、短途交通运输和空中起吊作业中也发挥着独特的作用。
航天
航天是指载人或不载人的航天器在地球大气层之外的航行活动,又称空间飞行或宇宙航行。航天的实现必须使航天器克服或摆脱地球的引力,如想飞出太阳系,还要摆脱太阳引力。从地球表面发射的飞行器,环绕地球,脱离地球和飞出太阳系所需要的最小速度,分别称为第一、第二和第三宇宙速度.是航天所需的三个特征速度。中国著名科学家钱学森认为人类飞行活动可以分为三个阶段,即航空、航天和航宇。他认为航空是在大气层中活动。航天是飞出地球大气层在太阳系内活动,而航宇则是飞出太阳系到广裹无根的宇宙中去航行。
航天器
遨游宇宙是人类在征服自然的过程中产生的愿望。20世纪40年代初期,大型液体火箭的成功发射奠定了现代航天技术的基础。世界第一颗人造卫星是斯普特尼克一号。由前苏联火箭专家科罗廖夫利用导弹改制而成,为铝制球体,直径58厘米,重83.6千克,球体,有4根鞭状天线,内装有科学仪器。1957年10月4日前苏联在拜科努尔航天中心发射升空,升空后发射了3个星期信号,在轨道中度过3个多月,围绕地球转了1400多圈,最后坠入大气层消失。斯普特尼克一号的成功发射标志着人类航天时代的开始。
1961年4月12日,苏联航天员加加林乘“东方”1号飞船进入太空.人类终于实现遨游游太空的伟大理想。火箭推进技术是航天技术的核心。航天实际上也有军用和民用之分,但世界各国在宣传自己的航天工业时都主要强调其商业或民用潜力。
占领和控制近地宇宙空间已经成为西方军事大国争夺军事优势的新焦点。在美国、俄罗斯等国已发射的航天器中,具有军事用途的超过70%。用于军事目的的航天器可分为三类:军用卫星系统、反卫星系统和军事载人航天系统。军用卫星主要分通讯卫星、气象卫星和侦察(间谍)卫星三种。反卫星系统包括反卫星卫星、定向能武器和动能武器。激光武器、粒子束武器和射频武器等屑于定向能武器,动能导弹、电磁饱和电热弹等屑于动能武器的范畴。军事载人航天系统分为空间站、飞船和航天飞机、空天飞机等,空间站可用作空间侦察与监视平台、空间武器试验基地、天基国家指挥所、未来天军作战基地等。20世纪80年代美国提出的所谓“星球大战”计划就是永久性性载人空间站为空间基地而部署的。
航天的民用潜力也是非常巨大的。空间物理探测、空间天文探剽、卫星气象观测、卫星海洋观测、卫星广播通讯、卫星导航、遥感考古、太空旅游和地外生命探索等都是航天的重要应用领域;微重力环境下完成的各种化学、物理和生物实验成果是航天为人类文明与进步所做的直接贡献。
航空与航天的联系
航天器的发射和回收都要经过大气层,这就使航空航天之间产生了必然的联系。除火箭和导弹外,一些新的航空航天飞行器也很难简单按航空航天区分。例如,可以重复使用的航天飞机、空天飞机等,虽然在大气层外的轨道上运行,但是,它们在进入太空和返回太空时都要像普通的飞机一样飞行。因此,在这些场合就没有必要对它们进行严格的区分。
航空航天一词,既蕴藏了进行航空航天活动必需的科学,又包含了研制航空航天飞行器所涉及的各种技术。从科学技术的角度看,航空与航天之间是紧密联系的。
航空航天技术是高度综合的现代科学技术。力学、热力学和材料学是航空航天的科学基础;电子技术、自动控制技术、计算机技术、喷气推进技术和制造工艺技术对航空航天的进步发挥了重要作用;医学、真空技术和低温技术的发展促进了航天的发展。上述科学技术在航空和航天的应用中相互交叉和渗透,产生了一些新的学科,使航空和航天科学技术形成了完整的体系。
意义
编辑航空的发展大大改变了交通运输的结构,飞机为人们提供了一种快速、方便、经济、安全、舒适的运输手段,国际航班已经代替了远洋客轮,成为人们洲际往来的主要工具,密切了世界各国的交往。国内航班在一些国家更多地代替了铁路客运,加快了边远地区的开发。通信卫星和大型客机被认为是现代社会的两个重要支柱。航空在工农业方面的应用也是有目共睹的,如轻型飞机等广泛用于空中摄影、大地测绘、地质勘探和资源调查,还可用于播种施肥、除草灭虫、森林防火和环境监测与保护等。
大型喷气式客机和通信卫星被认为是信息社会的两个重要支柱。在工业方面,飞机还广泛用于空中摄影、大地测绘、地质勘探和资源调查;在农业方面,飞机用于播种施肥、除草灭虫、森林防火以及环境保护。这一切对传统生产方式的变革产生了深远的影响。
航天技术与其他科学技术相结合开创了许多新的技术途径,它们直接服务于国民经济的众多部门,产生了巨大的经济和社会效益。卫星通信具有通信距离远、容量大、质量好、可靠性高、灵活机动等优点,已成为现代通信的重要手段。80年代初期,国际卫星通信网已承担三分之二的洲际电信业务和几乎全部洲际电视传输业务。卫星广播可以对广大地区的公众直接进行电视广播,使电视广播技术发生根本性的变革。卫星通信能够把分散的电子计算机设备连成全国或国际的信息网络,大大发挥计算机系统的效用。卫星通信和卫星广播对幅员辽阔、经济比较落后的国家是最经济、最有效的通信和广播手段。卫星导航引起了导航技术的重大变化,实现了全天候、全球、高精度导航定位,应用于舰船导航、海洋调查、海上石油钻探、大地测绘、搜索营救等方面。气象卫星提供的云图和其他气象观测资料对于提高气象预报的精度,特别是对台风等灾害性天气预报有很重要的作用,给国民经济许多部门带来很大好处。地球资源卫星是普查地球资源的最迅速、最有效、最经济的工具,可应用于调查地下矿藏、海洋资源、水利资源,协助管理农、林、牧、渔业,监视自然灾害和环境污染等方面。一颗地球资源卫星每年获得的收益约为卫星研制和发射费用的十几倍。
航空技术和航天技术不仅给国民经济各部门带来直接经济效益,而且通过新技术、新产品、新材料、新工艺以及新的管理方法向国民经济各部门推广和转移,带来了十分可观的间接经济效益。
航空航天为科学研究的发展作出了重要贡献。在很长时间内,人类对自然界的认识全部来自在地球表面进行的生产活动和科学研究。航空技术为人类提供了从空中观察自然界的条件。气球是最早进行对地观测、大气探测的空中运载工具。飞机可以在上万米的高空对地球进行大面积观测。航天揭开了从太空观测、研究地球和整个宇宙的新时代。人造地球卫星刚一上天就发现了地球辐射带。接着,各种科学卫星和空间探测器发现了地球磁层、地冕、太阳风,基本上了解了它们的结构及其相互影响,测量了太阳系大多数行星的大气参数、表面结构和化学成分;在宇宙中发现了大量的X射线,γ射线和红外天体,发现了极高能量的粒子以及可能是“黑洞”的天体。载人航天实现了人在太空的天文观测,并且送人登上了月球,进行实地考察。通过航天活动获得的有关地球空间、行星际空间、太阳系和遥远宇宙天体的极其丰富的信息,大大更新了人类对于地球空间、太阳系和整个宇宙的认识,推动了天文学、空间物理学、高能物理学、生物学的发展,形成了一些新的学科分支。装有各种遥感器的航天器已经成为观测和监视地球物理环境的有效工具。卫星气象观测、卫星海洋观测、卫星资源勘测等新技术推动了气象学、海洋学、水文学、地质学、地理学、测绘学的发展,产生了卫星气象学、卫星海洋学、卫星测绘学等一系列新的学科分支。载人航天器为人类创造了一个具有众多特殊环境条件(极高真空、微重力、超低温、强太阳辐射)的天然实验室,可借以开展物理、化学、生物、医学、新材料、新工艺等综合研究工作。例如,在微重力条件下,可以研制和生产高纯度大单晶、超纯度金属和超导合金以及特种生物药品等。
航空航天产品是附加值很高的高新技术产品。就航空产品而言,美国F - 16战斗机1 kg质量的价格是1 kg白银价格的20倍,相当于1 kg黄金的25%,远高于船舶、汽车和计算机的单位价格。如果按美国B- 2A战略轰炸机的价格来算,飞机质量50000 kg,单价20亿美元,折算单位质量价格为黄金的3倍。
航空航天产业已经成为部分发达国家经济的重要组成部分。在制造业中,航空航天业对美国的贸易平衡贡献最大,每年达到数百亿美元的贸易顺差。美国航空工业是美国国防工业的核心,是世界上最强大的航空工业部门。另一些国家也开始重视航空航天工业的发展,如韩国就已经把航空航天工业确定为优先发展的高技术产业。
中国航空技术
编辑中国是世界文明古国,中国的风筝和火箭是世界公认的最古老的飞行器。灿烂的中国古代文化与其他国家的古代文明一起,共同孕育了现代航空航天技术的萌芽。在近代中国的屈辱历史中,中国的工业化水平远落后于西方国家。新中国成立后,中国的航空航天工业开始快速发展。经过半个多世纪的努力,基本建成了中国的航空航天工业体系。航空航天工业在国防和经济建设中发挥着越来越重要的作用。”飞豹”战斗轰炸机和“神舟”号系列载人试验飞船的成功,标志着中国的航空航天工业进人了一个新的发展时期。
中国航空技术
从1910年清政府开始筹办飞机修造厂到1949年,旧中国只有十多个设备相当简陋的航空工厂,修理、装配、设计和制造过少量飞机。当时所有原材料、机载成品和设备均依赖外国进口,根本没有自己独立的航空工业,更谈不上航空科研体系。
新中国成立以后,1951年4月17日,中央军委和政务院颁发了《关于航空工业建设的决定》。对新中国航空工业建设的任务、方针、组织领导等,做出明确规定。4月18‘日,中共中央决定在原重工业部设立航空工业局。经过50余年的建设,中国的航空工业从修理到制造,从仿制到自行研制,已经形成了具有相当规模和基础、配套齐全的航空科研设计、制造和试验的工业体系。航空工业已成为中国国民经济中技术密集的新兴产业之一。
尽管总体上中国的航空工业与发达国家之间还存在较大差距,但50多年来,中国先后建立了飞机、发动机、航空电子、军械武器、仪表等专业设计研究机构,建立了空气动力、强度、自动控制、材料、工艺、试飞和计算技术等专业研究试验机构。中国航空科研的技术手段不断更新、试验设备日臻完善,已建成了一批技术先进的风洞试验设施、飞机全机静力试验室、发动机高空模拟试车台和飞行试验实时数据采集和处理系统等。
代表中国航空技术发展的产品主要有军用飞机、民用飞机、战术导弹、航空发动机、机载设备和以各种机动车为主的民用产品。
中国航天技术
新中国的航天工业起步于1956年。当时中国的经济还很落后,工业基础和科学技术力量也相对薄弱,为了把有限的人力、物力和财力集中使用到国家最重要、最急需、最能影响全局的地方,党和政府决定重点发展以导弹、原子弹为代表的尖端技术,随后大力发展运载火箭和人造地球卫星等航天技术,这就是中国的“两弹一星”工程。40多年来,中国在导弹武器、运载火箭、人造地球卫星和载人航天方面取得了辉煌成就,航天工业为中国的国防建设做出了巨大贡献。
国外航空技术
编辑世界上第一个科学思考和研究飞行的是意大利文艺复兴巨匠达·芬奇,他不仅是画家、学者,也同时是航空科学先驱,是世界上公认的第一位以科学方法和科学知识研究飞行的伟大学者。
达·芬奇观察到,鸟喜欢逆风飞行,翅膀总是与风的方向有一定的角度。他认为鸟的升力是来自于鸟翅膀对空气压缩后空气产生的反作用力。这一结论比牛顿的作用力与反作用力理论整整早了200年。达·芬奇对飞行问题研究的另一重大贡献是,他认为在研究鸟飞行的同时,还必须研究鸟飞行的环境,即流动的空气或风对鸟飞行的影响,而空气的运动特性可以通过水的流动来模拟研究。这就是现代航空飞行必须开展的“风洞”或“水洞”试验。
气球是轻于空气的飞行器,比飞机早100多年问世,在飞机问世之前成为人类探索天空的先导。发明热气球的是法国的蒙哥尔费兄弟。1783年,兄弟二人用麻布和纸制成一个直径达10m的热空气气球,以燃烧湿稻草和碎羊毛产生的热空气充满气球,经过试验和多次改进,于1783年6月14日在昂诺内省首次升空。
一是高超声速(Hypersonics)。隐身已经使美国领先于其同等对手,而速度将使美国继续保持领先地位。美国已在高超声速领域花费了数十亿美元,但却让中国和俄罗斯追上来了。因此,美国将启动作战型吸气式高超声速导弹发展,并以一个稳健的后续规划,发展可重复使用的高超声速(速度马赫数5+)情监侦与打击飞机所需的技术。
二是自主性(Autonomy)。自主性事关人类在所有领域的能力的提升,从空域管理到空中主宰,航空会变得更加安全、经济上更为可承受,并且支撑新的使命和市场需求。
美国空军计划在2020年实现机器辅助的作战行动,压缩杀伤链时间,实现防御性系统管理员自主识别威胁并给出行动建议,情报分析系统融合情报数据并向人类分析员提示威胁。2030年后,将实现对平台作战行动的优化,确保其可在“反介入/区域拒止”环境中连续执行任务。
三是连通性(Connectivity)。无论是在商业领域还是战争领域,任何有关有人和无人系统一起无缝工作的愿景,都需要可以与其他海量用户安全、保密和高效分享频谱的网络。但是频谱是有限且宝贵的资源,而且美国的竞争对手们也可竞争并利用。因此,美国认为需要开发诸如激光通信或太赫兹等新频谱的技术,以及能够动态地分享空中波谱的技术。
美军正在实施多个与连通性相关的科研项目,其重点是在对抗环境下实现组网通信及高速通信。以美国国防部国防高级研究计划局(DARPA)的“100G”项目为例,它旨在利用对毫米波信号的高阶调制和空间复用实现100吉比特每秒的传输速率。
四是推进(Propulsion)。对涡轮发动机技术持续的投资已使美国保持对竞争对手们的领先,新的高燃料效率商用涡扇发动机正在投入使用,而军用的通用自适应循环发动机正在发展之中。但是,民用发动机还需要更高的效率。军用动力装置也需要更好的经济可承受性和更强的能力。发动机为飞机赋能,但是它的技术发展需要数十年,因此要保持投资。
美国已实施了两个国家级推进技术计划。第一个是1987年启动的“综合高性能涡轮发动机技术”(IHPTET)计划,其目标是将推重比提升一倍,其成果支撑了F-22战斗机的F119和F-35战斗机的F135发动机。第二个是2005年启动的“通用经济可承受先进涡轮发动机”(VAATE)计划,计划将发动机的经济可承受性提高10倍,将大型涡扇/涡喷发动机的推重比提高100%,燃料消耗降低25%,发动机的发展、采购和寿命周期维护费用降低60%,并计划在2019年完成。
美国空军研究实验室对VAATE计划的简要说明,下图为该实验室准备在美国航空航天局(NASA)推进系统实验室的高空台上,利用一台F110涡扇发动机进行强行抽取兆瓦级功率的试验
现在,美国国防部正在制定第三个国家级推进技术计划——“支撑经济可承受及任务能力的先进涡轮发动机技术”(ATTAM)计划,该计划的制定工作由美国空军研究实验室(AFRL)牵头,已进行了一年时间,将首次包括彻底集成动力与热管理系统的内容,最早将在2017年启动。
五是高效率(Efficiency)。为了降低油耗或排放,航空运输领域对提升效率的要求不会减少,对发动机而言将是“没有最好,只有更好”。美国航空航天局(NASA)会继续投入资金,与工业界一起发展可使美国保持领先的X飞机。
洛马公司在AFRL的“高能量效率的革命性布局”(RCEE)项目中发展了“混合翼身”(HWB)布局的战略运输机。按照该公司的设计,该机除采用具有很高空气动力效率的布局之外,还拟配装超高涵道比涡扇发动机,可运载美国空军当前使用C-5战略运输机才能运送的超大型货物,并且耗油率比C-17战略战术运输机可降低多达70%。
美国洛马公司“混合翼身”(HWB)布局战略运输机想象图(上图)及该机采用空中加油配置、利用翼下吊舱实现双点伸缩套管(硬式)加油的想象图(下图)
2016年2月,该布局4%的缩比模型在美国航空航天局兰利研究中心的国家跨声速风洞中进行了风洞试验。按计划,2016年秋季,该公司将完成有人驾驶的HWB演示验证机的研究与分析工作。RCEE项目将在2017年结束,但美国航空航天局已将HWB布局验证机与波音公司的“翼身融合体”(BWB)布局验证机视为其下一个X飞机的竞争方案
六是材料(Materials)。先进制造技术并不仅止于3D打印。从铝到钛,再到碳纤维,新材料已经点燃了航空航天领域革命的火种。美国希望领导下一场革命,不管它是源自由纳米增强的复合材料、在原子尺度装配的新合金、生物工程学材料还是生物启发的结构。通过推进计算和建模来支撑更快的新材料认证也是关键。
DARPA正在实施“从原子到产品”(A2P)项目,其目标是开发装配尺寸接近原子的纳米级工件的技术和工艺,装配形成至少毫米级尺寸的系统、零件或材料。DARPA认为,许多常见材料在纳米级制造时会展示出独特和很不寻常物理性能,这些原子级性能具有重要的国防应用潜能,包括量子化的电流-电压特性、极大降低熔点并具有极高的比热。现在面临的挑战是,如何在较大尺寸的产品级(一般几厘米)器件和系统上保持这种原子级材料的特性。
A2P项目重点关注装配,其次是纳米级独特性的开发。通过A2P项目形成的系统、零件或材料将通过纳米级装配实现独特的材料性能、小型化、3D结构和异质(材料和几何形状)
七是定向能(Directed Energy)。精确制导武器曾在冷战时期赋予美国抵消苏联数量优势的能力,并使美军能够在反恐战争中实施外科手术式的打击。但是,它们已变成了普遍事物。现在,在美国看来,其潜在对手不仅数量庞大,而且装备精良。美国需要定向能武器的精确性和近乎无限的“储弹量”,这种武器正在走出实验室,进行作战评估和早期部署。
目前,美国的弹载高功率微波战斗部技术和战术飞机机载激光武器技术正在取得突破。以下面的两张图为例,上图为2012年10月,采用高功率微波战斗部的AGM-86C空射巡航导弹正在被装入B-52H轰炸机内埋弹舱中的“通用战略武器旋转发射装置”。下图为DARPA的“高能液体激光区域防御系统”(HELLADS)项目成果配装轰炸机和战斗机,用于拦截导弹的想象图。HELLADS发射功率为150千瓦,目标质量为758千克,功率密度达到5千克/千瓦的极高水平。该样机已从2015年夏季开始在新墨西哥州的白沙导弹试验场进行试验,但此后再未公布任何进展。
八是可复用性(Reusability)。美国的经济和安全高度依赖用于通信、导航与授时、监视、广播、气象预报、资源监测的卫星,但建造并发射航天器仍是漫长且昂贵的过程,并且在轨的卫星也是潜在的脆弱资产。美国必须推动相关技术的发展,实现以快速响应、完全可复用性的方式日常化地进入空间。
DARPA正在通过“实验性太空飞机”(XS-1)项目发展可重复使用助推飞行器,目标是验证可重复使用助推飞行器能够在10天内完成10次飞行,同时将一个重900磅(约400千克)的试验载荷送入轨道。DARPA还期望未来可以通过换装更大型的一次性上面级来发射3000磅左右(约1400千克左右)的轨道载荷,并将这种载荷的单次发射成本控制在500万美元(包括可重复使用助推飞行器和一次性上面级的费用)。
九是颠覆(Disruption)。在美国人看来,人类虽不能预测未来,但可以为未来做好准备。颠覆性技术和服务是一个威胁,对于现存的行业如航空是如此,对于固定的用户们和规则制定方(如联邦航空局和国防部)也是如此。如果美国的航空航天能力要继续茁壮成长,就必须在企业和政府的官僚体系之间建立桥梁。
颠覆性技术
编辑在8月28日举办的中国航空创新创业大会上,中航工业经济技术研究院科技情报专业特级专家、系统工程研究所总师、研究院赵群力谈到了目前航空领域几项颠覆性技术,这些技术能够给航空业带来飞跃性的进步。
“颠覆性技术”的概念最早于1995年在《哈弗商业评论》中提出,指能够建立新技术和新市场的突变式技术。2016年国务院发布的“十三五”科技创新规划中也提到要“构造先发优势”,重视颠覆性技术的作用。赵群力表示,颠覆性技术风险高,研发周期长,但却是航空装备升级换代的决定性力量。
一、高超音速技术
高超音速指物体的速度超过5倍音速。高超音速飞行器采用的超音速冲压发动机被认为是继螺旋桨和喷气推进之后的“第三次动力革命”。美国、俄罗斯、法国、日本、印度等国正不断开展实验。
2013年,美国军方最新研发的实验型高超音速飞机X-51A以5倍多音速的速度飞行了3分多钟;2014年,美国国防部先进研究项目局(DARPA)启动了“高超音速吸气式武器概念(HAWC)”和“战术助推滑翔系统(TBG)”这两个项目,将于2018年或2019年进行测试。
高超音速技术将主要用于运输、攻击、ISR、进入空间等。预计2020年,美军可掌握高超声速导弹的技术;2030年掌握有限用途和使用次数的高超声速飞机技术;2040年掌握可多次、长时间使用高超声速飞机技术。
二、无人机技术
这个无人机绝不是仅仅指目前网上有出售的那些遥感小型无人机,这项技术在军事和商业领域都有很大的应用前景。
2016年6月,美国辛辛那提大学开发的“阿尔法”(ALPHA)智能超视距空战系统通过了专家评估,并在空战模拟器环境下,击败了有着丰富经验的退役美国空军上校吉恩·李。
三、变体飞机技术
变体飞机,既变形飞机,指飞行器在飞行过程中可以改变形状,有效地实现外形的分布式连续式变形,以适应宽广变化的飞行环境,完成各种任务使命。
2015年5月,美国柔性系统公司(FlexSys)的分布式柔性变形机翼技术取得重大进展,使用这种技术的变形襟翼在“湾流”III飞机上的偏转角(固定设置)达到预期的30度,并成功验证了飞行性能。
四、高速直升机技术
高速直升机是指保留直升机的飞行特征,且巡航速度达到400至500千米每小时的直升机,运输效率和机动性优越。目前直升机的巡航速度一般为每小时200至300千米。美国从20世纪五六十年代开始探索高速直升机,欧洲、俄罗斯也在积极推进。
最新进展中,值得关注的有西科斯基、贝尔直升机公司以及极光公司的三个方案。
上图第一幅显示的是西科斯基/波音的SB-1方案。该直升机最大起飞重量约为13.6吨,可在高温、高原环境下搭载4名机组成员和12名全副武装的士兵,最大飞行速度能够达到250节(463千米/时)。预计将在2016年晚些时候开始总装,2017年下半年完成首飞。
第二大方案是贝尔直升机公司V-280方案(上图),采用倾转旋翼设计,设计速度达280节,航程800海里,可乘坐4名机组人员及14名武装人员,有效载荷为12000磅,计划2017年首飞。
极光公司的“雷击”方案(上图),设计的持续飞行速度达到556-741千米/小时,悬停效率不低于75%;巡航状态升阻比不低于10,有用载重(燃油和有效载荷)不低于总重的40%,有效载荷不低于总重的12.5%。
五、伪卫星技术
伪卫星技术可以使对位置测算的精确度更高,负责实时接收GPS信号并测出伪距误差,把误差数据提供给本地用户,用户则以此更正自己测得的伪距,使计算出的位置精度更高。
目前的方案包括英国“西风”太阳能无人机,巡航高度为7万英尺(21336米),续航时间可达3月,可携带有效载荷5公斤。据说英国国防部已经订购了两架,计划2016年首飞。
美国的“秃鹰”太阳能无人机概念方案中,无人机能携带1000磅、5千瓦的载荷,最长可以在空中连续工作5年,但由于技术难度太大,项目已经终止。
六、空基发射航天器技术
1990年代,轨道科学公司就改装了洛克希德公司(现洛克希德·马丁公司)研制的三发动机宽体喷气式客机L-1011,来发射“飞马座”火箭,其近地轨道运载能力443kg,成功发射过几十次。
2002年,DARPA启动“空中发射辅助太空进入(ALASA)”项目,目标是在24小时内将100磅卫星发射进入地球低卫星轨道,而且每次发射成本不超过100万美元。
七、分布式电推进技术
分布式混合电推进系统,是指通过传统燃气涡轮发动机为分布在机翼和机身的多个电机/风扇提供电力,并由电机驱动风扇提供绝大多数或全部的推力的新型推进系统。
这项技术的最大优势是能极大地降低推进系统燃油消耗量和各种排放,并且减少噪声,对商用或军用飞机都有应用价值。欧洲、美国政府都将分布式混合电推进系统视为潜力技术,在2030年后投入使用。
NASA的X-57分布式电推进技术验证机将在2017年首飞。空客已经开始研究基于分布式混合电推进系统的翼身融合飞机方案。
八、机载激光武器技术
1990年代,美国空军启动了基于氧碘激光器的ABL和ATL机载激光武器研究计划,用于战区弹道导弹助推段防御及其他战术目标防御,具有反卫星能力。2010年,由于试验未达到预期目标,以及使用维护上的诸多困难,空军停止了这项计划。尽管如此,美国在目标搜索与跟踪、激光大气传输补偿、抖动控制和高能激光束管理等方面取得了重要进展。
九、计算材料技术
材料对航空设备的更新与完善至关重要。计算材料技术的主要用途是,可以通过理论模型和计算,预测或设计材料结构与性能,从而大幅提高新材料的研发效率,并且可以按照特定的要求设计出满足工程需要的特种材料和超材料。
其关键技术是材料建模技术、材料仿真技术、材料数据库。2011年,奥巴马政府曾正式决定进行材料基因组计划,目标是将新材料的研发周期缩短一半。
参考资料
编辑展开[1]美国对华航空航天技术出口管制政策体系研究 - 中国知网.中国知网. [2021-12-24].
该页面最新编辑时间为 2024年4月6日
百科词条作者:小小编,如若转载,请注明出处:https://glopedia.cn/60723/